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Ahstraet-The governing equations of condensation phenomena controlled by heat transfer on large 
droplets in a pure vapor are derived. Using the isentropic expansion as the first approximation, the 
equations are integrated by means of the perturbation method. This method is illustrated by presenting 
an example. The problem is an important one in the field of steam turbine engineering, although the 

condensation problem is of more general interest. 

NOMENCLATURE 

radius of control sphere [m] or [p] ; 
heat capacity of liquid [m’/s*degK] ; 
heat capacity of vapor at constant 
pressure [m2/s2degK] ; 
heat capacity of vapor at constant 
volume [m*/s* degK] ; 
latent heat [m’/s’] ; 
adiabatic index; 
mass of the sphere (vapor and liquid) 

Ckl ; 

Mach number ; 
pressure [atm] or [kg/m s’] ; 
spherical coordinate [m] ; 
radius of nucleus [m] ; 
gas constant [m2/s2 degK] ; 
time [s] ; 
saturation temperature at the be- 
ginning of expansion [degK] ; 
saturation temperature on the droplet 
surface at a given pressure [degK] ; 
temperature of vapor far from droplet 

CdegK] ; 
velocity [m/s] ; 
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ratio of mass of liquid to mass of 
sphere ; 
radius of droplet [m] or [u] ; 
heat-conduction coefficient [kg m/s3 

degK1; 
density of vapor [kg/m31 ; 
density of liquid [kg/m3]; 
overcooling [degR] ; 
constants in the relations for enthalpy 
[m2/s2]; 
specific enthalpy of liquid [m’/s’] ; 
specific enthalpy of vapor [m2/s2] ; 
internal energy of liquid [m2/s2] ; 
internal energy of vapor [m2/s2] ; 
pressure inside the droplet [atm] or 

[kg/m s’l. 

INTRODUCTION 

THE PROBLEM of condensation on droplets 
appears in a variety of forms as the object of 
scientific and engineering research. This problem 
is, among others, an important one in steam 
turbine engineering. 

The behavior of liquid phase is an essential 
factor in determining the work of the last stages 
of steam turbines. The desire to increase the 
efficiency of these stages yields a growing 
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interest in phenomena associated with wet 
steam expansion. Among the many aspects of 
this problem the process of condensation is of 
great importance. The condensation process 
itself is interesting for general reasons, especially 
in the investigation of two-phase flow. 

The phenomenon of “condensation shock” 
has mainly been investigated [l, 2, 31 until now 
in connection with steam expansion. The region 
of “condensation shock” is that in which the 
non-equilibrium state breaks down very rapidly 
and the liquid phase appears, resulting in a 
characteristic change of parameters which re- 
sembles a “washed out” shock. The droplets 
formed in this region due to nucleation are very 
small in comparison with the mean free path. 

In addition to these small droplets, large 
drops are formed during the expansion in 
cascades of blades, either as the result of steam 
condensation on small droplets, or due to dis- 
integration of liquid films covering the surfaces 
of turbine blades. 

In this paper a theoretical analysis of con- 
densation on large droplets has been carried 
out by means of the perturbation method. As 
far as it is known to the author, recent methods 
of calculation of the expansion in blade rows 
are based on equilibrium thermodynamics. 
The method described below allows us to predict 
the deviation from equilibrium during expansion 
for a given dispersion of liquid phase. 

While preparing the present paper the author 
faced the dilemma, whether to construct a 
more accurate model of phenomena of which an 
analytic solution would not be feasible, or to 
make further simplifying assumptions and use a 
model capable of calculation. By choosing the 
second method, the author believes that the 
results, from an engineering point of view, are 
more useful. 

THE MAIN ASSUMPTIONS 

Droplets large in comparison with mean free 
path are considered. the latent heat is assumed 
to be released from droplets to the surrounding 
atmosphere of pure vapor due to heat transfer 

of strictly macroscopic character. There is a 
coupling between heat transfer and mass trans- 
port which controls the growth of the droplets. 

The upper limit of mass transport to the 
droplet can be estimated from equilibrium 
condensation using, for example, the entropy- 
enthalpy diagrams. The velocity of condensed 
mass near the surface during equilibrium ex- 
pansion at a practically reasonable rate is of the 
order of 10-2-10-3 m/s for droplet radius of 
about 1 l.t. For such a small velocity we neglect 
the propagation of momentum and convection 
component of heat transfer. This leads to the 
spatially uniform pressure at any instant 

ap = 0 F . 

ar 

and heat transfer is primarily by conduction. 
It is conceivable that these assumptions may 
not be justified when the slip velocity of a drop- 
let with respect to vapor is large. However, 
if the velocity equilibration time of droplet is 
very small in comparison to the time ofexpansion 
we can neglect the influence of slip velocity 
on the condensation process. For example, for 
the droplet radius 1 p the velocity equilibration 
time in pure vapor is of the order of 10e5 s. 

Further simplifying assumptions concern the 
temperature of the droplets. We assume that 
heat conduction inside the droplet is infinite. 
This assumption is reasonable when the thermal 
equilibration time of a droplet is small in 
comparison with expansion time. The thermal 
equilibration time for droplet radius 1 lr is 
of the order of 10m5 s. Assuming the local 
equilibrium near the droplet surface, the tem- 
perature of the droplet will follow the satura- 
tion temperature for a given pressure. Using the 
assumption about quasi-stationary process of 
heat conduction from a droplet to vapor, the 
equation of temperature reduces itself to 
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with boundary conditions 

r = 6, T = G = APL 
r = co, T = T,. 

This is the assumption commonly used in the 
investigation of two phase flow in nozzles [4, 51. 

If the equation of unsteady heat transfer is 
considered, which reads 

aT i a aT ---_=a-- y2-- 
at (1 r2 ar ar 

and the following values are taken for the 
estimation 

CI = 0.3 . 10e4 m2/s, Ar = lop6 m, 

AT = lOOdegK, At = 5. 10-4s, 

we get the order of lo9 for the right-hand side 
and the order of lo5 for the left-hand side. Thus 
the assumption of the quasistationary character 
of heat conduction seems to be reasonable 
under certain conditions. 

Consequently we get simple, well-known, 
solutions for the distribution of temperature 
and pressure around the droplet 

T=(T, - Tm);+ T, (1) 

P = !a. (2) 

In order to find the deviation from equilibrium 
due to the condensation on large droplets, we 
neglect the nucleation phenomenon even if it 
occurs as the result of overcooling in the region 
between droplets. We shall turn back to the 
estimation of this effect in what follows. 

the droplet during the expansion. By this we 
avoid having complications with the deforma- 
tion of the flow. Let us write the conservation 

FIG. 1. Droplet and control sphere. 

of mass for liquid and vapor in the forms 

a 

-?rd3p2 + 4rc pr2dr = 0 
5 1 (3) 
d 

and the first thermodynamic law with the 
assumption that the sphere is expanding adi- 
abatically (no heat addition from outside the 
sphere) 

+ p2&(fy63) + p$&jr2drj = 0. (4) 

6 
GOVERNING EQUATIONS 

We will consider the expansion of a vapor 
Assuming that the vapor is a perfect gas 

with radius a(t) which contains a droplet of p = pRT. (5) 
radius d(t) at the center (Fig. 1). The initial A s 
values a(0) and 6(O) depends on initial dispersion 

was mentioned above, the change of internal 

of liquid phase and initial moisture of the 
energy of the droplet results from heat con- 
d uction and mass transfer, so we have 

vapor. 
We will assume that there is no change in the 

spherical shape of the atmosphere surrounding 
$Gi3p2i2) = ~+(+~p,),- 4, (6) 
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where 

4 = - ;14n# aT 
0 & r=d 

i, = cT2 + i,, 

Substituting (13) into (8) we obtain equations 
for T and 3, which are defined as 

(7) T, = T T,, 6 = 66,. 

in the form 

i = c,T + i, 

which gives after substituting (1) into (7) and 
~~2-n.t)62=i(l+mjB(l)d,-~). 

then into (6) 0 

(14) 

L(T, - T,) = p,hs; - ;p2c gJ2, (8) where we introduce the dimensionless numbers 

where 2cRT2 
ii=?*, EC 

h=i-i2 
and the characteristic time 

is the latent heat. . -1 

RT, 

Integrating the Clapeyron-Clausius relation, 

dp h dT2 -= -~ 
P R T; 

(9) 

with the assumption that h = constant and that 
at any pressure p = ps, we know the saturation 
temperature T2 = T,, we obtain 

T, = T, 

1 _ RT,nLC 
h ps 

In order to simplify the relations, let us choose 
an expression for pressure change as 

5: = e(t) 

so that, at t = 0, p = ps, we get 

(11) 

p = ps exp [i e(t) dtl. (12) 

At moderate temperatures, the magnitude of 
expression R TJh for water vapor in relation (10) 
is of the order O-1 or less. Therefore, for not very 

Then r is the time required to transport heat 
p,h6: through the surface Si due to the tempera- 
ture gradient T,/6, and heat conductivity 1. 

In order to derive an equation for T we can 
rearrange the relation (4) applying (3) to the 
form 

h 

6 

We introduce in the above equation two 
average quantities 

4~ i pr2 dr 

p= “, . 
4njr’dr 

d 

(16) 

large expansion ratios, 
(10) into the form 

we can change relation and 

f 4~ a ipr’ dr 

y 
I 

(13) 
;= 

471 i pr2 dr 

= Cpp + i,. 
RP 

(17) 
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Using the equation of state (5) and the relation 
for the temperature distribution (1) we obtain 

Neglecting the term 

we have Looking at the equations derived above, 

In most applications the mass of liquid is much 
smaller than the mass of vapor, so 

a 

4 
5 ad3p, + 4n 

s 
pr2 dr. 

6 

If we assume further that 

and 

cp = const 

f - i, r i - i, = h, 

we can reduce equation (15) to the form 

-+j(t)+&+=O, (18) 

where the dimensionless number 

Finally, we obtain two equations (14) and 
(18) which describe the behavior of 6 and T 
during the condensation process on a droplet 
within the limitations of above assumptions. 

Starting from the equilibrium state, the 
initial conditions at t = 0 are 

i==l and 6= 1. 

PERTURBATION METHOD OF 
SOLVING THE EQUATIONS 

The perturbation method of solving the 
equations involved in two-phase problems has 
been used successfully in [4] and [S]. Depending 
on the physical aspect of the phenomena, 
different groups of parametres involved in the 
problems have been used. The main point of 
such a method lies in finding reasonable “zero 
order solution” of the problem and a perturba- 
tion parameter. 

we can find two extremal solutions with regard 
to the behavior of two characteristic parameters 
r and 1. 

When the characteristic time z = 0 (i.e. A = 
co), we have, from (19a), 

T = 1 + Hi { e(t) dt. 
0 

(20) 

This is the case of equilibrium condensation. 
From equation (19b) we obtain 

k-l 
7 O(t) 

0 

x (1 + +?(f)dr)d+. (21) 

0 

When E = 0 (this means that the influence of 
the existing droplet is negligible in expansion of 
the sphere), the temperature of the vapor 
changes as in isentropic expansion ; we have 
from (19b) 

T = exp(y 1 B(t)dt). (22) 
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we get from (20) 

T = 1 - 1.492 x 102 t 

and from (21), 

(36) 

s = (1 f 3.54 x 103 t - 3.9 x lo5 t2)f. 

(37) 

The agreement with values obtained by means 
of diagrams is quite satisfactory, as is shown in 

370 
/ 

FIG. 3. Conwarison of analytical results with results ob- 
tained from-s< diagram. 

Fig. 3. For zero approximation from 
have 

To = exp ( - 4.62 x lo2 t), 

GQ), we 

(38) 

and after expansion in powers oft, from (23) we 
get 

6, = (1 - 67.5 t + 1.18 x lo6 t2)+. (39) 

The results of the calculation are shown in Fig. 4. 
A~QA rhnwn k the infltwxwc nf the terms nfthe 

FIG. 4. Temperature and droplet radius for zero- and first- 
order solutions. 
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been found numerically. The corrections con- 
nected with the second approximation are 
negligible in this case. 

The deviation from the equilibrium state 
given by (31) is shown in Fig. 5. On this same 
figure are shown nuclei forming rate (32) and 
radius of nucleus (33). The growth of the 
relative moisture in the equilibrium expansion 
case is shown in Fig. 6, also moisture caused by 

t 

FIG. 6. Growth of moisture during expansion. 

condensation controlled by heat transfer, y,, 
and moisture y* liberated by the nucleation 
effect. 

At the end of the expansion, the relative 
moisture y* is quite appreciable in comparison 
with the moisture y,. 

It is also worth mentioning that in this case 
the correction in (16) 

5R 

is very small. At the end of the expansion, this 
correction is approximately 0.0038. 

CONCLUSIONS 

With assumptions that seem reasonable from 
the practical point of view, it is possible to solve 
the system of equations describing the growth 
of large droplets and the change of temperature 
of the vapor. 

A solution can be found either for the case of 
equilibrium condensation or for the more 
realistic case, i.e. condensation controlled by 
heat conductivity. In this case, the isentropic 
expansion of the vapor is the first approximation 
in the perturbation method. As was shown in the 
example, the change of temperature of the vapor 
is closer to the isentropic expansion than to the 
equilibrium expansion. It causes overcooling 
and nucleation as well. Therefore, in some 
cases we can expect sufficient nucleation zone 
(so-called condensation shock) regardless of 
whether the vapor contains moisture or not at 
the beginning of expansion. 
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RbCI_.es equations de base des phtnomtnes de condensation par le transport de chaleur sur de 
grosses gouttelettes dans une vapeur pure sont obtenues. En employant la detente isentropique en 
premiere approximation, les equations sont integrees par la methode des perturbations. Le probleme est 
important dam le domaine de la technique des turbines & vapeur bien que le probieme de la condensation 

soit dun inter& plus general. 

Zusammenfaa%mg--Es wurden die kentueichnenden Gleichungen abgeleitet filr die Kondensation an 
einem grossen Tropfen in reinem Dampf. Unter Benutzung der isentropen Expansion als erste Naherung 
wurden die Gleichungen mit Hilfe der Striimungsmethode integriert. Diese Methode wird an einem 
Beispiel dargestellt. Das Problem ist wichtig in der Dampfturbinentechnik, daneben ist das Konden- 

~tionsproblem von allgemeinem Interesse. 

hIaoTaqHa--.hIBeAeHbI OCHOBHbIe J'paBHeHMR ]ZJlR KOHf(eHCa!.lMYI, KOHTpOJlHpyeMOit TellnO- 
06MeHOM Ha 6OJIbUlHX K3llSlfIX B YllCTOM nape. YP3BHeHHR EHTel'pMpyWTCH MeTOAOM BO3- 
MY~eHAttCUCIlOJIb30B3HEleM Il33HTnOpHOrOpaCru~peHMR KBSieCTBe IIepBOFO npwbnartteekrri. 
&iRaYa EirpaeT B%KHJ'W POJlb B IEipO-Typ6BHHOft TeXHklKe, XOTR npodnesra KOH~eHC3qHn 

~pe~cTan~~eT 6onee o(imst% urrrepec. 


